Publikationen 2024
Baales J., Zeisler-Diehl V.V., Kreszies T., Klaus A., Hochholdinger F., Schreiber L. (2024). Transcriptomic changes in barley leaves induced by alcohol ethoxylates indicate potential pathways of surfactant detoxification. Scientific Reports, 14: 4535. https://doi.org/10.1038%2Fs41598-024-54806-21
Becker M., Clavero R., Khin O. M., Kong S., Maung Z. N., Men P., Pariyar S., Regalado M.J.C., Ro S., Win K.K. (2024). System shift in rice: Processes and pathways of change in rice-based production systems of Southeast Asia. Agricultural Systems, 217, 103917. https://doi.org/10.1016/j.agsy.2024.1039172
Bohle F., Klaus A., Ingelfinger J., Tegethof H., Safari N., Schwarzländer M., Hochholdinger F., Hahn M., Meyer A.J., Acosta I.F., Müller-Schüssele S.J. (2024). Contrasting cytosolic EGSH dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP22. Journal of Experimental Botany, 75: 2299-2312. https://doi.org/10.1093/jxb/erae0353
Fichtner F., Humphreys J.L., Barbier F.F., Feil R., Westhoff P., Moseler A., Lunn J.E., Smith S.M., Beveridge C.A. (2024). Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. New Phytologist, 244: 900-913. https://doi.org/doi: 10.1111/nph.200724
He X., Wang D., Jiang Y., Li M., Delgado-Baquerizo M., McLaughlin C., Marcon C., Guo L., Baer M., Moya Y.A.T., von Wirén N., Deichmann M., Schaaf G., Piepho H.-P., Yang Z., Yang J., Yim B., Smalla K., Goormachtig S., de Vries F.T., Hüging H., Baer M., Sawers R.J.H.*, Reif J.C.*, Hochholdinger F.*, Chen X.*, Yu P.* (2024). Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nature Plants, 10(4): 598-617. https://doi.org/10.1038/s41477-024-01654-75
Hochholdinger F., Yu P. (2024). Molecular concepts to explain heterosis in crops. Trends Plant Sci., 26: 1360-1385. https://doi.org/10.1016/j.tplants.2024.07.01867
Hochholdinger F., Yu P., Feix G. (2024). Genetic Analysis of Maize Root Development. In: Plant Roots – The Hidden Half. 5th edition, chapter 11, pp. 185-199.
Huang L., Ökmen B., Stolze S.C., Kastl M., Khan M., Hilbig D., Nakagami H., Djamei A., Doehlemann G. (2024). The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. New Phytolist, 241: 1747-1762. https://doi.org/10.1111/nph.194488
Khan M., Djamei A. (2024). TOPLESS Corepressors as an Emerging Hub of Plant Pathogen Effectors. Molecular Plant-Microbe Interactions, 37(3): 190-195. https://doi.org/10.1094/MPMI-10-23-0158-FI9
Kirschner G.K., Hochholdinger F., Salvi S., Bennett M.J., Huang G., Bhosale R.A. (2024). Genetic control of the root angle in cereals. Trends in Plant Science, 23: 1360-1385. https://doi.org/10.1016/j.tplants.2024.01.00810
Klaus A., Marcon C., Hochholdinger F. (2024). Spatiotemporal transcriptomic plasticity in barley roots: Unravelling water deficit responses in distinct root zones. BMC Genomics, 25: 79. https://doi.org/10.1186/s12864-024-10002-011
Li N., Li G., Wang D., Ma L., Huang X., Bai Z., Wang Y., Luo M., Luo Y., Zhu Y., Cao X., Feng Q., Xu Y., Mu J., An R., Yang C., Chen H., Li X., Dong Y., Zhao J., Jiang L., Jiang Y., Reif J.C., Hochholdinger F., Chen X., Wang D., Zhang Y., Bai Y., Yu P. (2024). Large-scale multi-omics analyses identified root-microbiome associations underlying plant nitrogen nutrition. bioRxiv. https://doi.org/10.1101/2024.02.05.57862112
Maina A.W., Oerke C.-E. (2024). Hyperspectral imaging for quantifying Magnaporthe oryzae sporulation on rice genotypes. Plant Methods 20: 87. https://doi.org/10.1186/s13007-024-01215-113
Maina A.W., Becker M., Oerke C.-E. (2024). Assessing Interactions between Nitrogen Supply and Leaf Blast in Rice by Hyperspectral Imaging. Remote Sensing, 16(6): 939. https://doi.org/10.3390/rs1606093914
Moseler A. (2024). Hot to Go: The impact of protein nitrosylation on plant fertility. Plant Physiology, 197: kiaf011. https://doi.org/10.1093/plphys/kiaf01115
Moseler A. (2024). Ripe on time: How posttranslational modifications of a transcription factor impact tomato fruit ripening. Plant Physiology, 196: 14-15. https://doi.org/10.1093/plphys/kiae30816
Moseler A., Wagner S., Meyer A.J. (2024). Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biological Chemistry, 405: 547-566. https://doi.org/10.1515/hsz-2024-003817
Oerke E.C., Steiner U. (2024). Hyperspectral imaging reveals small-scale water gradients in apple leaves due to minimal cuticle perforation by Venturia inaequalis conidiophores. Journal of Experimental Botany, 75 (10): 3125-3140. https://doi.org/10.1093/jxb/erae06518
Schlösser M., Moseler A., Bodnar Y., Homagk M., Wagner S., Pedroletti L., Gellert M., Ugalde J.M., Lillig C.H., Meyer A.J. (2024). Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification. The Plant Journal, 118: 1455-1474. https://doi.org/10.1111/tpj.1668719
Steiner U., Oerke E.C. (2024). The hemibiotrophic apple scab fungus Venturia inaequalis induces a biotrophic interface but lacks a necrotrophic stage. Journal of Fungi 10, 831. https://doi.org/10.3390/jof1012083120
Wang D., He X., Baer M., Lami K., Yu B., Tassinari A., Salvi S., Schaaf S., Hochholdinger F., Yu P. (2024). Lateral root enriched Massilia associated with plant flowering in maize. Microbiome, 12: 124. https://doi.org/10.1186/s40168-024-01839-421
Win Y.N., Stöcker T., Du X., Brox A., Pitz M., Klaus A., Schoof H., Hochholdinger F., Marcon C. (2024). Expanding the BonnMu sequence-indexed repository of transposon induced maize (Zea mays L.) mutations in dent and flint germplasm. Plant J. 120: 2253-2268. https://doi.org/10.1111/tpj.170882223
Yu B., Zhou C., Wang Z., Bucher M., Schaaf G., Sawers R.J.H., Chen X., Hochholdinger F., Yu P. (2024). Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. New Phytologist, 243: 1936-1950. https://doi.org/10.1111/nph.1995224
Yu P., Li C., Li M., He X., Wang D., Li H., Marcon C., Li Y., Perez-Limón S., Chen X., Delgado-Baquerizo M., Koller R., Metzner R., van Dusschoten D., Pflugfelder D., Borisjuk L., Plutenko I., Mahon A., Resende Jr M.F.R., Salvio S., Akale A., Abdalla M., Ali Ahmed M., Bauer F.M., Schnepf A., Lobet G., Heymans A., Suresh K., Schreiber L., McLaughlin C.M., Li C., Mayer M., Schön C.-C., Bernau V., von Wirén N., Sawers R.J.H., Wang T., Hochholdinger F. (2024). Seedling root system adaptation to water availability during maize domestication and global expansion. Nature Genetics, 56: 1245-1256. https://doi.org/10.1038/s41588-024-01761-325
Zhou Y., Sommer M.L., Meyer A., Wang D., Klaus A., Stöcker T., Marcon C., Schoof H., Haberer G., Schön C.-C., Yu P., Hochholdinger F. (2024). Cold mediates maize root hair developmental plasticity via epidermis-specific transcriptomic responses. Plant Physiol., 196: 2105-2120. https://doi.org/10.1093/plphys/kiae44926
Links
- https://doi.org/10.1038%2Fs41598-024-54806-2
- https://doi.org/10.1016/j.agsy.2024.103917
- https://doi.org/10.1093/jxb/erae035
- https://doi.org/doi:%2010.1111/nph.20072
- https://doi.org/10.1038/s41477-024-01654-7
- https://doi.org/10.1016/j.tplants.2024.07.018
- https://doi.org/%2010.1016/j.tplants.2024.07.018
- https://doi.org/10.1111/nph.19448
- https://doi.org/10.1094/MPMI-10-23-0158-FI
- https://doi.org/10.1016/j.tplants.2024.01.008
- https://doi.org/10.1186/s12864-024-10002-0
- https://doi.org/10.1101/2024.02.05.578621
- https://doi.org/10.1186/s13007-024-01215-1
- https://doi.org/10.3390/rs16060939
- https://doi.org/10.1093/plphys/kiaf011
- https://doi.org/10.1093/plphys/kiae308
- https://doi.org/10.1515/hsz-2024-0038
- https://doi.org/10.1093/jxb/erae065
- https://doi.org/10.1111/tpj.16687
- https://doi.org/10.3390/jof10120831
- https://doi.org/10.1186/s40168-024-01839-4
- https://doi.org/10.1111/tpj.17088
- https://doi%2010.1111
- https://doi.org/10.1111/nph.19952
- https://doi.org/10.1038/s41588-024-01761-3
- https://doi.org/10.1093/plphys/kiae449