Publications 2024
Baales J., Zeisler-Diehl V.V., Kreszies T., Klaus A., Hochholdinger F., Schreiber L. (2024). Transcriptomic changes in barley leaves induced by alcohol ethoxylates indicate potential pathways of surfactant detoxification. Scientific Reports, 14: 4535. https://doi.org/10.1038%2Fs41598-024-54806-21
Becker M., Clavero R., Khin O. M., Kong S., Maung Z. N., Men P., Pariyar S., Regalado M.J.C., Ro S., Win K.K. (2024). System shift in rice: Processes and pathways of change in rice-based production systems of Southeast Asia. Agricultural Systems, 217, 103917. https://doi.org/10.1016/j.agsy.2024.1039172
Bohle F., Klaus A., Ingelfinger J., Tegethof H., Safari N., Schwarzländer M., Hochholdinger F., Hahn M., Meyer A.J., Acosta I.F., Müller-Schüssele S.J. (2024). Contrasting cytosolic EGSH dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP22. Journal of Experimental Botany, 75: 2299-2312. https://doi.org/10.1093/jxb/erae0353
He X., Wang D., Jiang Y., Li M., Delgado-Baquerizo M., McLaughlin C., Marcon C., Guo L., Baer M., Moya Y.A.T., von Wirén N., Deichmann M., Schaaf G., Piepho H.-P., Yang Z., Yang J., Yim B., Smalla K., Goormachtig S., de Vries F.T., Hüging H., Baer M., Sawers R.J.H.*, Reif J.C.*, Hochholdinger F.*, Chen X.*, Yu P.* (2024). Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nature Plants, 10(4): 598-617. https://doi.org/10.1038/s41477-024-01654-74
Hochholdinger F., Yu P. (2024). Molecular concepts to explain heterosis in crops. Trends Plant Sci., 26: 1360-1385. https://doi.org/10.1016/j.tplants.2024.07.01856
Hochholdinger F., Yu P., Feix G. (2024). Genetic Analysis of Maize Root Development. In: Plant Roots – The Hidden Half. 5th edition, chapter 11, pp. 185-199.
Huang L., Ökmen B., Stolze S.C., Kastl M., Khan M., Hilbig D., Nakagami H., Djamei A., Doehlemann G. (2024). The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. New Phytolist, 241: 1747-1762. https://doi.org/10.1111/nph.194487
Khan M., Djamei A. (2024). TOPLESS Corepressors as an Emerging Hub of Plant Pathogen Effectors. Molecular Plant-Microbe Interactions, 37(3): 190-195. https://doi.org/10.1094/MPMI-10-23-0158-FI8
Kirschner G.K., Hochholdinger F., Salvi S., Bennett M.J., Huang G., Bhosale R.A. (2024). Genetic control of the root angle in cereals. Trends in Plant Science, 23: 1360-1385. https://doi.org/10.1016/j.tplants.2024.01.0089
Klaus A., Marcon C., Hochholdinger F. (2024). Spatiotemporal transcriptomic plasticity in barley roots: Unravelling water deficit responses in distinct root zones. BMC Genomics, 25: 79. https://doi.org/10.1186/s12864-024-10002-010
Li N., Li G., Wang D., Ma L., Huang X., Bai Z., Wang Y., Luo M., Luo Y., Zhu Y., Cao X., Feng Q., Xu Y., Mu J., An R., Yang C., Chen H., Li X., Dong Y., Zhao J., Jiang L., Jiang Y., Reif J.C., Hochholdinger F., Chen X., Wang D., Zhang Y., Bai Y., Yu P. (2024). Large-scale multi-omics analyses identified root-microbiome associations underlying plant nitrogen nutrition. bioRxiv. https://doi.org/10.1101/2024.02.05.57862111
Maina A.W., Oerke C.-E. (2024). Hyperspectral imaging for quantifying Magnaporthe oryzae sporulation on rice genotypes. Plant Methods 20: 87. https://doi.org/10.1186/s13007-024-01215-112
Maina A.W., Becker M., Oerke C.-E. (2024). Assessing Interactions between Nitrogen Supply and Leaf Blast in Rice by Hyperspectral Imaging. Remote Sensing, 16(6): 939. https://doi.org/10.3390/rs1606093913
Oerke E.C., Steiner U. (2024). Hyperspectral imaging reveals small-scale water gradients in apple leaves due to minimal cuticle perforation by Venturia inaequalis conidiophores. Journal of Experimental Botany, 75 (10): 3125-3140. https://doi.org/10.1093/jxb/erae06514
Steiner U., Oerke E.C. (2024). The hemibiotrophic apple scab fungus Venturia inaequalis induces a biotrophic interface but lacks a necrotrophic stage. Journal of Fungi 10, 831. https://doi.org/10.3390/jof1012083115
Wang D., He X., Baer M., Lami K., Yu B., Tassinari A., Salvi S., Schaaf S., Hochholdinger F., Yu P. (2024). Lateral root enriched Massilia associated with plant flowering in maize. Microbiome, 12: 124. https://doi.org/10.1186/s40168-024-01839-416
Win Y.N., Stöcker T., Du X., Brox A., Pitz M., Klaus A., Schoof H., Hochholdinger F., Marcon C. (2024). Expanding the BonnMu sequence-indexed repository of transposon induced maize (Zea mays L.) mutations in dent and flint germplasm. Plant J. 120: 2253-2268. https://doi.org/10.1111/tpj.170881718
Yu B., Zhou C., Wang Z., Bucher M., Schaaf G., Sawers R.J.H., Chen X., Hochholdinger F., Yu P. (2024). Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. New Phytologist, 243: 1936-1950. https://doi.org/10.1111/nph.1995219
Yu P., Li C., Li M., He X., Wang D., Li H., Marcon C., Li Y., Perez-Limón S., Chen X., Delgado-Baquerizo M., Koller R., Metzner R., van Dusschoten D., Pflugfelder D., Borisjuk L., Plutenko I., Mahon A., Resende Jr M.F.R., Salvio S., Akale A., Abdalla M., Ali Ahmed M., Bauer F.M., Schnepf A., Lobet G., Heymans A., Suresh K., Schreiber L., McLaughlin C.M., Li C., Mayer M., Schön C.-C., Bernau V., von Wirén N., Sawers R.J.H., Wang T., Hochholdinger F. (2024). Seedling root system adaptation to water availability during maize domestication and global expansion. Nature Genetics, 56: 1245-1256. https://doi.org/10.1038/s41588-024-01761-320
Zhou Y., Sommer M.L., Meyer A., Wang D., Klaus A., Stöcker T., Marcon C., Schoof H., Haberer G., Schön C.-C., Yu P., Hochholdinger F. (2024). Cold mediates maize root hair developmental plasticity via epidermis-specific transcriptomic responses. Plant Physiol. 196: 2105-2120. https://doi.org/10.1093/plphys/kiae44921
Links
- https://doi.org/10.1038%2Fs41598-024-54806-2
- https://doi.org/10.1016/j.agsy.2024.103917
- https://doi.org/10.1093/jxb/erae035
- https://doi.org/10.1038/s41477-024-01654-7
- https://doi.org/10.1016/j.tplants.2024.07.018
- https://doi.org/%2010.1016/j.tplants.2024.07.018
- https://doi.org/10.1111/nph.19448
- https://doi.org/10.1094/MPMI-10-23-0158-FI
- https://doi.org/10.1016/j.tplants.2024.01.008
- https://doi.org/10.1186/s12864-024-10002-0
- https://doi.org/10.1101/2024.02.05.578621
- https://doi.org/10.1186/s13007-024-01215-1
- https://doi.org/10.3390/rs16060939
- https://doi.org/10.1093/jxb/erae065
- https://doi.org/10.3390/jof10120831
- https://doi.org/10.1186/s40168-024-01839-4
- https://doi.org/10.1111/tpj.17088
- https://doi%2010.1111
- https://doi.org/10.1111/nph.19952
- https://doi.org/10.1038/s41588-024-01761-3
- https://doi.org/10.1093/plphys/kiae449