Desert Goes Green

Süßwasser durch Algen-basierte Meerwasserentsalzung

Graphical abstract:
© Armin Djamei
Prof. Dr. Armin Djamei
Exzellenzuniversität Bonn
INRES-Pflanzenpathologie
Nussallee 9,D-53115 Bonn
Tel: +49 (0) 228 / 73 – 2444
Email: Djamei@uni-bonn.de
https://www.pflanzenkrankheiten.uni-bonn.de

Verwendete Literatur:

  1. Raza, A.; Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 2019. 30;8(2):34.
  2. Arthus-Bertrand, Y. On water. 2018.  DOI: https://www.eib.org/en/essays/on-water.
  3. Gray, M. Water in Agriculture. 2022.
  4. Rhodes, C.J., Permaculture: regenerative--not merely sustainable. Sci Prog, 2015. 98(Pt 4): p. 403-12.
  5. Nouri, H., et al., Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci Total Environ, 2019. 653: p. 241-252.
  6. Tredici, M.R., Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 2010. 1: p. 143 - 162.
  7. Guiry, M.D., HOW MANY SPECIES OF ALGAE ARE THERE? J Phycol, 2012. 48(5): p. 1057-63.
  8. Dahlin, L.R., et al., Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo. Commun Biol, 2019. 2: p. 388.
  9. Udayan, A., et al., Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochemistry Reviews, 2022.
  10. Govorunova, E.G., et al., Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem, 2017. 86: p. 845-872.
  11. Mukohata, Y. and Y. Kaji, Light-Induced Membrane-Potential Increase, Atp Synthesis, and Proton Uptake in Halobacterium-Halobium R1mr Catalyzed by Halorhodopsin - Effects of N,N'-Dicyclohexylcarbodiimide, Triphenyltin Chloride, and 3,5-Di-Tert-Butyl-4-Hydroxybenzylidenemalononitrile (Sf6847). Archives of Biochemistry and Biophysics, 1981. 206(1): p. 72-76.
  12. Feroz, H., et al., Light-Driven Chloride Transport Kinetics of Halorhodopsin. Biophysical Journal, 2018. 115(2): p. 353-360.
  13. Yoshizawa, S., et al., Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proceedings of the National Academy of Sciences, 2014. 111(18): p. 6732-6737.
  14. Besaw, J.E., et al., The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem, 2020. 295(44): p. 14793-14804.
  15. Inoue, K., et al., A light-driven sodium ion pump in marine bacteria. Nat Commun, 2013. 4: p. 1678.
  16. Yoshizawa, S., et al., Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A, 2014. 111(18): p. 6732-7.
  17. Balashov, S.P., et al., Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle. Biochemistry, 2014. 53(48): p. 7549-61.
  18. Zhao, H., et al., Coexistence of light-driven Na(+) and H(+) transport in a microbial rhodopsin from Nonlabens dokdonensis. J Photochem Photobiol B, 2017. 172: p. 70-76.
  19. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 2003. 100(24): p. 13940-13945.
  20. Padan, E. and M. Landau, Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease, in The Alkali Metal Ions: Their Role for Life, A. Sigel, H. Sigel, and R.K.O. Sigel, Editors. 2016, Springer International Publishing: Cham. p. 391-458.
  21. Inoue, K., et al., Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin. J Phys Chem B, 2018. 122(25): p. 6453-6461.
  22. Shevchenko, V., et al., Inward H<sup>+</sup> pump xenorhodopsin: Mechanism and alternative optogenetic approach. Science Advances, 2017. 3(9): p. e1603187.
  23. Kovalev, K., et al., Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci Adv, 2019. 5(4): p. eaav2671.
  24. Wickstrand, C., et al., Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochimica et Biophysica Acta (BBA) - General Subjects, 2015. 1850(3): p. 536-553.
  25. Kolbe, M., et al., Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science, 2000. 288(5470): p. 1390-6.
  26. Yun, J.H., et al., Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser. Proc Natl Acad Sci U S A, 2021. 118(13).
  27. Hosaka, T., et al., Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3. Journal of Biological Chemistry, 2016. 291(34): p. 17488-17495.
  28. Zhang, H., et al., Applications and challenges of rhodopsin-based optogenetics in biomedicine. Front Neurosci, 2022. 16: p. 966772.
  29. Cheeseman, J.M., The integration of activity in saline environments: problems and perspectives. Funct Plant Biol, 2013. 40(9): p. 759-774.
  30. Apse, M.P., et al., Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999. 285(5431): p. 1256-8.
  31. Flowers, T.J., R. Munns, and T.D. Colmer, Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015. 115(3): p. 419-31.
  32. Nakamura, A., et al., Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol, 2006. 47(1): p. 32-42.
  33. Inoue, K., Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. Adv Exp Med Biol, 2021. 1293: p. 89-126.
  34. Wang, X., et al., Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. Plant Cell, 2014. 26(10): p. 4102-18.
  35. Komarova, N.Y., et al., Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic, 2012. 13(8): p. 1090-105.
  36. Rix, G., et al., Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nature Communications, 2020. 11(1).
  37. Gradinaru, V., K.R. Thompson, and K. Deisseroth, eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol, 2008. 36(1-4): p. 129-39.
  38. Tanaka, S., K. Ikeda, and H. Miyasaka, Enhanced tolerance against salt-stress and freezing-stress of Escherichia coli cells expressing algal bbc1 gene. Curr Microbiol, 2001. 42(3): p. 173-7.
  39. Ivey, D.M., et al., Molecular-Cloning and Sequencing of a Gene from Alkaliphilic Bacillus-Firmus Of4 That Functionally Complements an Escherichia-Coli Strain Carrying a Deletion in the Nhaa Na+/H+ Antiporter Gene. Journal of Biological Chemistry, 1991. 266(34): p. 23483-23489.
  40. Mishra, A. and B. Tanna, Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. Front Plant Sci, 2017. 8: p. 829.
  41. Bohm, J., et al., Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Curr Biol, 2018. 28(19): p. 3075-3085 e7.
  42. Jaubert, M., et al., Light sensing and responses in marine microalgae. Curr Opin Plant Biol, 2017. 37: p. 70-77.
  43. Ryan, A., J.H. Liu, and A. Deiters, Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling. Journal of the American Chemical Society, 2021. 143(24): p. 9222-9229.
  44. Camsund, D., A. Jaramillo, and P. Lindblad, Engineering of a Promoter Repressed by a Light-Regulated Transcription Factor in <i>Escherichia coli</i>. BioDesign Research, 2021. 2021: p. 9857418.
  45. Weber, A.M., et al., A blue light receptor that mediates RNA binding and translational regulation. Nat Chem Biol, 2019. 15(11): p. 1085-1092.
  46. Salto, R., et al., New Red-Emitting Chloride-Sensitive Fluorescent Protein with Biological Uses. ACS Sens, 2021. 6(7): p. 2563-2573.
  47. Dubach, J.M., et al., In vivo sodium concentration continuously monitored with fluorescent sensors. Integr Biol (Camb), 2011. 3(2): p. 142-8.
  48. Bregestovski, P., T. Waseem, and M. Mukhtarov, Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity. Front Mol Neurosci, 2009. 2: p. 15.
  49. Ortega, G., et al., Halophilic enzyme activation induced by salts. Sci Rep, 2011. 1: p. 6.
  50. Mcgarry, M.G., Algal Flocculation with Aluminum Sulfate and Polyelectrolytes. Journal Water Pollution Control Federation, 1970. 42(5): p. R191-&.
  51. Lee, A.K., D.M. Lewis, and P.J. Ashman, Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 2009. 21(5): p. 559-567.
  52. Papazi, A., P. Makridis, and P. Divanach, Harvesting Chlorella minutissima using cell coagulants. Journal of Applied Phycology, 2010. 22(3): p. 349-355.
  53. de la Noüe, J., G. Laliberté, and D. Proulx, Algae and waste water. Journal of Applied Phycology, 1992. 4(3): p. 247-254.
  54. Schenk, P.M., et al., Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Research, 2008. 1(1): p. 20-43.
  55. Salim, S., et al., Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 2011. 23(5): p. 849-855.
  56. Jiang, J., et al., Harvesting of Microalgae Chlorella pyrenoidosa by Bio-flocculation with Bacteria and Filamentous Fungi. Waste and Biomass Valorization, 2021. 12(1): p. 145-154.
  57. Vandamme, D., et al., Reversible Flocculation of Microalgae using Magnesium Hydroxide. BioEnergy Research, 2015. 8(2): p. 716-725.
  58. Zhao, X.Q. and F.W. Bai, Yeast flocculation: New story in fuel ethanol production. Biotechnology Advances, 2009. 27(6): p. 849-856.
  59. Lian, J., et al., The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol, 2018. 11(5): p. 806-818.
  60. Hotter, V., et al., A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proc Natl Acad Sci U S A, 2021. 118(33).
  61. Kimura, K. and Y. Tomaru, [Marine Viruses that infect Eukaryotic Microalgae]. Uirusu, 2015. 65(1): p. 37-46.
  62. Laezza, C., G. Salbitani, and S. Carfagna, Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel), 2022. 8(10).
  63. Leao, P.N., M.T.S.D. Vasconcelos, and V.M. Vasconcelos, Allelopathic activity of cyanobacteria on green microalgae at low cell densities. European Journal of Phycology, 2009. 44(3): p. 347-355.
  64. Zernova, O.V., et al., Regulation of Plant Immunity through Modulation of Phytoalexin Synthesis. Molecules, 2014. 19(6): p. 7480-7496.
  65. Guzman, F., et al., Identification of Antimicrobial Peptides from the Microalgae Tetraselmis suecica (Kylin) Butcher and Bactericidal Activity Improvement. Marine Drugs, 2019. 17(8).
  66. Baddeley, H.J.E. and M. Isalan, The Application of CRISPR/Cas Systems for Antiviral Therapy. Front Genome Ed, 2021. 3: p. 745559.
  67. Petrovic Fabijan, A., et al., Phage therapy for severe bacterial infections: a narrative review. Med J Aust, 2020. 212(6): p. 279-285.
  68. Lachance, M.A. and W.M. Pang, Predacious yeasts. Yeast, 1997. 13(3): p. 225-32.
  69. Sreekumar, N., et al., Marine microalgal culturing in open pond systems for biodiesel production-Critical parameters. Journal of Renewable and Sustainable Energy, 2016. 8(2).
  70. Costa, J.A.V., et al., Chapter 9 - Open pond systems for microalgal culture, in Biofuels from Algae (Second Edition), A. Pandey, et al., Editors. 2019, Elsevier. p. 199-223.
  71. Uhse, S., et al., In vivo insertion pool sequencing identifies virulence factors in a complex fungal-host interaction. Plos Biology, 2018. 16(4).
  72. Rabe, F., et al., A complete toolset for the study of Ustilago bromivora and Brachypodium sp as a fungal-temperate grass pathosystem. Elife, 2016. 5.
  73. Czedik-Eysenberg, A., et al., The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution. New Phytol, 2018. 219(2): p. 808-823.
  74. Darino, M., et al., Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New Phytologist, 2021. 229(6): p. 3393-3407.
  75. Bindics, J., et al., Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. New Phytologist, 2022.
  76. Navarrete, F., et al., The Pleiades are a cluster of fungal effectors that inhibit host defenses. PLoS Pathog, 2021. 17(6): p. e1009641.
  77. Navarrete, F., et al., TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Communications, 2021: p. 100269.
  78. Saado, I., et al., Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. The Plant Cell, 2022: p. koac105.
Wird geladen